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Anomalous Scaling in Systems 
Partially Controlled by Diffusion 
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We study the nature of anomalous scaling in several systems partiaIty controlled 
by diffusion. We quantify the departure from Fickian scaling by means of an 
apparent exponent governing the scaling of long-time behavior with system 
size. We find that anomalous scaling should be expected whenever complex 
geometries, higher dimensionality, or time-dependent boundary conditions a r e  

encountered. 
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1. I N T R O D U C T I O N  

An elementary result in the theory of diffusive systems is that the 
asymptotic time dependence of functionals of the concentration scales as 
the square of some length characteristic of the system size. However, it has 
long been known ~1) that anomalous scaling arises in permeation or 
sorption problems with, for example, time-dependent boundary conditions. 
Similar behavior is also seen in reaction-diffusion systems and in spatially 
inhomogeneous systems. 

In an effort to characterize this departure from the naive scaling form, 
we consider several elementary problems in diffusive systems, including 
both time-independent and radiation boundary conditions and a simple 
reaction-diffusion system. We quantify the observed behavior through 
various logarithmic derivatives, which in turn produce certain slowly 
varying functions which, at least locally in the system size, play the role of 
apparent scaling exponents. 
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Furthermore, these apparent local scaling exponents can in some cases 
be interpreted as governing the scaling of some part of the mass of the ran- 
dom walk problem isomorphic to the diffusive system under consideration, 
so that this behavior is reminiscent of the scaling seen in truly fractal 
systems. These apparent exponents are of course not scale invariant, and 
there is no a priori fractal character to any of the simple systems we study. 
However, experimental data corresponding to such systems might easily be 
interpreted in the light of fractal scaling, suggesting to the experimentalist 
the application of concepts from fractal geometry as predictive tools. 
Moreover, our elementary but occasionally counterintuitive results suggest 
the origin of nonclassical scaling exponents in systems where there is no 
underlying fractal structure. 

In one dimension, our model system is a planar slab of material 
initially devoid of diffusing solute, i.e., c(x, t = O) = O, 0 < x < l, with various 
boundary conditions imposed at x--= 0 and x = l. The primary quantities of 
interest are the flux per unit area at x = l, 

J(l, t )=  -D(~c/Ot) ,  (1.1) 

and the total mass transport across that boundary, 

fo Q(t) = J(1, t') dt' (1.2) 

In d >  2, our model is a cylindrical shell, a spherical shell, or a higher 
dimensional analog. In general, we consider transport equations of the 
form 

Oc/Ot = ~xc(x ,  t) (1.3) 

where L*"x is an operator of mixed differential and algebraic type, linear in 
x. Problems of this type are often readily solved in Laplace transfdrm, 
resulting, for example, in an expression for the Laplace transform of J(x, t): 

I f (x ;  P) fo ~ e Pt j (x ,  t) dt (1.4) J(x; p) p a(p  = 

J(x, t) is obtained by evaluating the corresponding Bromwitch integral, 
with the result that 

. f ( x ; O )  ~ 1 f ( x ; p , )  
J(x,  t) = A(O) + ~= p ,  (OA/Op)p-~ exp(p,t)  (1.5) 

where the p,  are the ordered distinct roots of A ( p ) =  0 and f ( x ;  O)/zl(O) is 
the asymptotic steady-state solution Js. 
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For the problems we consider, the roots Pn are all negative. Thus, at 
long times, the approach to equilibrium is dominated by the root nearest 
the origin, Pl, or 

J(x, t ) - J s % ~ o ~ '  Cz(x)e  -jp'r' (1.6) 

Thus, a semilogarithmic plot of ]J(x, t ) - J s ]  against time is expected to be 
asymptotically linear with slope - [p~]. Ultimately, it is the dependence of 
rPl] on l that we seek. However, J ( p ) =  0 is, in general, a transcendental 
equation, and simple expressions for pl are not to be had. 

An alternative exists in the time lag, ~2) which characterizes the 
approach of a system to equilibrium and is given by 

L(x )  = - -  [ J s - J ( x ,  t)] dt (1.7) 
s 0 

The time lag has the advantage that it can often be obtained exactly, fre- 
quently in algebraic form. We are primarily interested in L(l), although 
another characteristic time is the mean first passage time, ~2/ 

t-(t) = L ( / )  - L(O)  (1.8) 

In the next section, we report on scaling results for permeation 
problems with time-independent boundary conditions, and in Section 3 we 
present our results for problems with radiation boundary conditions. 
Section 4 is devoted to a simple reaction-diffusion problem. 

2. T IME- INDEPENDENT BOUNDARY CONDITIONS 

Consider diffusion through a slab of thickness/, with the concen- 
tration obeying 

82c 0c 
D ~ = a-5 (2.1) 

and subject to the initial and boundary conditions 

c(x, O) = 0 

c(0, t) = Co (2.2) 

c(l, t) = 0 
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Then the Laplace transform of the flux is found to be 

J(x ) = Dco q cosh q( l -  x) 
p sinh ql (2.3) 

where q = (p/D) 1/2. The roots of A(p) = sinh ql are readily found to be 

q, = in~/l (2.4) 

o r  

so that 

Pn = - - n 2 r c 2  D/12 (2.5) 

Dc 0 D__~cl o ~ n~x n2~2 D,/# (2.6) J ( x , t ) = - - - ~ - 2  ,~ 1 Cos--T- e 

Thus, J(x, t ) -  Js scales asymptotically as Cl(x ) e x p ( -  Tz z Dt/12), 
In IJ(x, t ) - J s l  is asymptotically linear with slope -LplL-= _n2 Dt/l 2, and 
levi scales as 1-2, or the asymptotic time dependence of J(x, t) scales as l 2. 
Similarly, the time lag at l is found to be 

L(1) = I2/6D (2.7) 

and the mean time of first passage is the familiar Einstein result 

[(l) = 12/2D (2.8) 

These standard results mirror the scaling of an unbiased random walk, 
in which the mean square displacement of the walker is linear in time, 

( R  2 ) ~ t (2.9) 

so that the time for a random walker to traverse a system of length I should 
scale as t l~  l 2. Finally, since the "mass" of the trajectory of the random 
walker is linear in t, we have M ( l ) ~  l 2=- l ai, where M(I) is the mass of a 
trajectory of linear scale l, and d F is the fractal dimension of the random 
walk. For  unbiased random walks in any Euclidean dimension, 
dj.= ~3 In M(l)/~3 In l -  2. 

Estimators of ds, exact for this simple model, are provided by 

Vp = - 0  In pl/O in l 

vL = ~ In L(I)/d In I (2.10) 

re=  ~ In [(l)fi? In l 
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It is interesting to ask the effects of dimensionality and geometry on 
these results. We extend our simple slab-geometry results to a cylindrical 
shell, a spherical shell, and higher dimensional analogs. In d dimensions, 
Eq. (2.1) is replaced by 

~3t r-~-~r r~ D (2.11) 

where fl = d - 1 .  The boundary and initial conditions analogous to those 
given in Eq. (2.2) are now 

c(r, 0) = 0, a < r < b  

c(a, t) = c a (2.12) 

c(b, t) = 0 

Applying the method of Frisch, (2~ we find the time lag to be 

where 

L ( b , a ) = - ~ d  r -~ x ~ y - ~  d y d x d r  (2.13) 

I d =  b r fl ~i dr (2.14) 

We note in passing that limd~ ~ L(b, a ) =  ( b Z - a 2 ) / 2 d D .  
In d = 3, the time lag is L(b, a) = (b - a)2/6D, a result identical in form 

to the one-dimensional result (2.7). However, in no other dimension d >  1 
is the time lag a function of b - a. Thus, only in d = 1 and d = 3 is there a 
single length with which to characterize the system. We take as an 
appropriate generalization of the second equation in (2.10) for the 
apparent scaling exponent vL=~31nL/0 In V, where V = F a ( b d - - a d ) ,  SO 
that 

b a -  a d OL 
V L - L d b d - 1  Ob (2.15) 

with a held fixed. Only in d =  1 is vL a constant. In the limit b/a ~ 1, the 
volume is linear in the shell thickness, and vL--* 2, independent of dimen- 
sion. In the limit b/a ~ 0% the volume becomes proportional to b d, and 
vL ~ 2/d. It is interesting to note, however, that if the concentration at r = b 
is nonzero, then in this limit vL ~ 2 also. Plotted in Fig. 1 as a function of 
b/a is vL for d =  2, 3, and 4. 
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Fig. 1. Apparen t  scaling exponent  v r for shell geometries in dimensions d =  2, 3, and 4 as a 
function of b /a .  The concentrat ion is fixed at r = a and is taken to be 0 at r = b. 

Thus we see that complex non-Fickian scaling can be introduced even 
by simple geometric considerations. In subsequent sections, we will see how 
the introduction of nondiffusive elements, such as time-dependent boun- 
dary conditions and chemical reactions, can also affect observed scaling 
behavior. 

3. R A D I A T I O N  B O U N D A R Y  C O N D I T I O N S  

Now let us investigate the effect of time-dependent boundary con- 
ditions on the asymptotic time dependence of the flux. Consider a system 
obeying the diffusion equation (2.1) as before, but now with the initial and 
boundary conditions 

c(x, 0) = 0 

( ~ ) o  = h(c(O, t)-Co) 

c(l, t) = 0 

(3.1) 

The Laplace transform of the flux is now found to be 

J(x)  - Dco hq cosh q ( l -  x)  
p h sinh ql + q cosh ql 

(3.2) 
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where, as before, q = ( p / D )  1/2. The roots  of A(p) = h sinh ql+ q cosh ql are 
now, in general, only to be found numerically, so we consider the time lag, 
which is found to be 

l 2 s + 3  
L(1) = 6D s + 1 (3.3) 

where s = hi. Then vr  = ~3 In L(1)/O In l is found to be 

s 2 + 3 s + 3  
v L = 2 s 2 + 4 s +  3 (3.4) 

In the limits s --* 0 and s -~ oe we recover the naive form v L --* 2. The former 
limit is a null problem, and the latter limit is the system discussed in the 
preceding section. However,  vL attains a min imum of vL = xf3  at s = x/3,  
as seen in Fig. 2. Also shown in Fig. 2 is 

Vp = -c~ In pl/O In l 

= 2(s 2 -  q2112)/(s2 - q212 + s) (3.5) 

which is seen from the form of A(p) to depend only on s = hl. As can be 
seen, vL and Vp have qualitatively similar behavior. Finally, we note that 
{(l) = 12/2D for this system, an unsurprising result, as walkers contr ibut ing 
to an est imator of  first passage times will not  interact strongly with the 
bounda ry  condit ions at x = O. 
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Fig.  2. A p p a r e n t  sca l ing  e x p o n e n t s  v L a n d  v e for  a o n e - d i m e n s i o n a l  m o d e l  wi th  r a d i a t i o n  

b o u n d a r y  c o n d i t i o n s  a t  x = 0 as func t ions  of  s = hl. 
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Extending our results to the shall geometries discussed in the previous 
section, we find that the boundary and initial conditions analogous to 
those given in Eq. (3.1) become 

c(r, 0 )=0 ,  a<r<b 

rl~-~r =h(c(a, O-ca) (3.6) 

c(b, t) = 0 

Applying the method of Frisch, (z) we find the time lag to be 

1 x ~ y - ~  dy dx L(b, a)=D(1 +hid) 

+ h t[ r-~ f[ x~ f[ y-~ dy dx dr ) (3.7) 

where Ia is given by Eq. (2.14). The apparent scaling exponent vL is again 
given by Eq. (2.15). In dimensions d >  1, there is no natural scaling 
variable independent of h, although, as in the case of time-independent 
boundary conditions, vL ~ 2 as b/a -~ 1, and v L ~ 2/d as b/a ~ oo. Plotted 
in Fig. 3 as functions of b/a are vL(h=0), vL(h= 1), and vL(h~oo) for 
d =  2. (Note that h ~ oo is the case studied in the preceding section.) We 
see that the scaling does not depend strongly on h, with the strongest 

Fig. 3. 
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Apparent scaling exponent v L in d =  2 for various values of h as a function of b/a. 
Radiation boundary conditions hold at r = a, while c(b, t)= O. 
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dependence being for small b/a. These results are qualitatively similar to 
those for higher dimensions, where the dependence on h becomes even less 
pronounced and, as indicated above, vL tends asymptotically to 2/d. 

As a further example of the effect of radiation boundary conditions, let 
us return to the one-dimensional case and modify the boundary condition 
at x = l to be 

de)  = -h(c(l ,  t) - cl) (3.8) 

the initial conditions and boundary condition at x = 0 being given as in 
Eq. (3.1). We find the time lag at l to be 

12 6(c 0 + ct)(1 + s) + (Co + 2ct)s 2 
L(l) = (3.9) 

6D (Co - ct) s(2 + s) 

where s = hl. We find v L to be 

2 (c o + ct)(s 3 + 6s 2 + 12s + 6) + cts2(s + 3) 

v c = 2 + s  (CoWCl)(S2+6S+6)+CIS 2 
(3.1o) 

which tends, as before, to 2 as s = hl --* or. However, in the opposite limit of 
s--* O, vL= 1. 

Similar behavior is found in the mean first passage time, 

for which 

l 2 Co+Ct2+s  
(3.11) 

t-(l) = 2D c o - ct s 

l + s  
v i = 2 - -  (3.12) 

2 + s  

which has the same limiting values as vL. 
Extending these results to dimensions d >  1 is also possible; the 

modification to the boundary condition (3.6) analogous to (3.8) is 

8c) = -h(c(b,  t ) - c b )  (3.13) 
r~-~r b 

We present graphical results only for the case cb = 0 and h = 1 in Fig. 4 for 
dimensions d = 2 ,  3, and 4. As noted above, in d =  1, v/. ~ 2 as l ~  c~. 
However, in d >  1, vL--* 1 as b / a ~  oe. The value of b/a for which vL is a 
maximum approaches unity as d -*  ~ ,  and the magnitude of the effect is 
seen to diminish in higher dimensions. 
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Fig. 4. Apparent scaling exponent v L for shell geometries in dimensions d = 2, 3, and 4 as a 
function of b/a. Radiation boundary conditions hold on both inner and outer surfaces. In each 
case shown here, h = 1 and cb = 0. 

What is the significance of these results? If one makes measurements 
of the time lag (for a one-dimensional system) in an infinitesimal 
neighborhood of some lo, the values obtained will appear to scale as 
/vL(t=t0). Similarly, the asymptotic time dependence of the flux will appear 
to scale as /v,u=t0). Thus, vL and Yp a r e  seen to behave as fractal dimen- 
sions, albeit only locally in I. However, a class of systems of experimental 
interest may not span several orders of magnitude in l or hl, but may be 
restricted to a range of no more than an order of magnitude where v/~ and 
vp may be slowly varying. Thus, systems that are not truly fractal may 
appear so, and well-developed concepts from fractal geometry and scaling 
may be employed as predictive tools in describing the behavior of an entire 
class of experimental systems. 

The degree to which the time dependence of a one-dimensional system 
does not scale as 12 can also be taken as a measure of the importance of the 
boundary conditions, and suggests ranges over which one may ignore the 
full radiation boundary conditions and approximate a system by a less 
general model. 

In dimensions d>  1, the added term in the Laplacian [ ( d -  1)/r] ~/~r 
is responsible for the unusual scaling observed for both time-independent 
and radiation boundary conditions. Thus, one should expect complex 
scaling whenever higher dimensions and complicated geometries are 
encountered, irrespective of the nature of the boundary conditions, which 
are also seen to affect the scaling. 
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Since every diffusion problem is isomorphic to some random walk 
problem and the fractal dimension of an unbiased random walk in 
Euclidean space is known to be 2, it is tempting to ask where the missing 
dimensionality appears. We have already investigated the case of a slab 
composed of two distinct lamina for the particular problem of desorption 
from the first region through the second. (3) There, the time-dependent 
boundary conditions arise at the internal interface. Separate exponents are 
found for the left- and right-hand regions, and their sum is 2, so that the 
deviation of the individual exponents from 2 represents a partitioning of 
the mass of the equivalent random walk between the two regions. 

In the one-dimensional problems with radiation boundary conditions 
which we have investigated here, the missing dimensionality must appear in 
the half-spaces connected to the slab by radiation boundary conditions. 
The limits hl--+ 0 and hl--+ oo effectively decouple the slab from those half- 
spaces. However, the ideal treatment of the boundary conditions precludes 
concentration fluctuations in those half-spaces, and so the missing dimen- 
sionality is lost to our analysis. 

4.  R E A C T I O N  D I F F U S I O N  

Another case where anomalous scaling can be expected is in a system 
in which a chemical reaction is driven by a diffusive process. As a simplest 
case, consider an irreversible first-order reaction, for which the concen- 
tration obeys the partial differential equation 

a 2 c ac (4.1) 
D ~ -  kc(x, t) = a--7 

We consider the permeation problem with initial and boundary conditions 
given by (2.2). 

The Laplace transform of the flux is found to be identical to (2.3), only 
now q = [ (P  + k ) / D ]  1/2. Thus, 

Pn = - k  - n27t 2 D / I  2 (4.2) 

so that, apart from the constant shift by k, the scaling of the Pn is as one 
would expect. However, the time lag at I is found to be 

12 /d c o s h  Z / - -  sinh u 
- (4.3) L ( I )  2 D  u 2 s inh u 

and the mean first passage time is 

l 2 sinh u 
- ( 4 . 4 )  

{(l) 2 D  u cosh  u 
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where u = (kl2/D)1/2. The corresponding apparen t  exponents  are 

and 

u c o s h u s i n h u - u  
- ( 4 . 5 )  

vL sinh u u cosh u -  sinh u 

cosh u sinh u + u 
- ( 4 . 6 )  

v i =  cosh u sinh u 

Both of these apparen t  exponents  tend to 2 in the limit u --, 0, while in the 

limit u ~ oe, they tend to 1. These results are i l lustrated in Fig. 5. 
If we denote  by v(x, t) the b o u n d  or reacted species, then v satisfies the 

simple differential equa t ion  kc=~?v/dt. Then  the total  reacted mass 

V(t) = ~t o v(x, t) dx has a t ime lag 

12 sinh u - u 
L v =  2D u 2 sinh u (4.7) 

so that its cor responding apparen t  exponent  is 

u u c o s h u - s i n h u  
= (4.8) 

Vv s i n h u  s i n h u - u  

v v also tends to 2 in the limit u ~ 0. However,  v v --* 0 as u --+ oe. As our  
result for v v suggests, we have thus been unable  to ascribe any significance 

Fig. 5. 
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Apparent scaling exponents v i and v L for a one-dimensional reaction-diffusion system 
as functions of u = ( k l 2 / D )  1/2, 
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to vr (or vi) and vv as a partitioning of the mass of the random walk 
between a free part and a bound part. 

Nevertheless, our results have obvious practical implications. One can 
imagine, for example, a protective coating which scavenges some 
undesirable diffusant by means of a first-order reaction. If the species is of 
sufficiently high reactivity and low mobility, then the exit flux will be inver- 
sely proportional to the coating thickness, but the total reacted mass will 
be independent of the coating thickness. 

ACKNOWLEDGMENT 

This work was supported in part by a grant from the National Science 
Foundation, number DMR 85 15519. 

REFERENCES 

1. H. L. Frisch, J. Chem. Phys. 37:2408 (1962). 
2. H. L. Frisch, J. Chem. Phys. 36:510 (1962). 
3. G. O. Williams, H. L. Frisch, and H. Ogawa, J. Colloid Interface Sci. 123:448 (1988). 


